skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fialko, Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Strength of the upper brittle part of the Earth's lithosphere controls deformation styles in tectonically active regions, surface topography, seismicity, and the occurrence of plate tectonics, yet it remains one of the most debated quantities in geophysics. Direct measurements of stresses acting at seismogenic depths are largely lacking. Seismic data (in particular, earthquake focal mechanisms) have been used to infer orientation of the principal stress axes. I show that the focal mechanism data can be combined with information from precise earthquake locations to place constraints not only on the orientation, but also on the magnitude of absolute stress at depth. The proposed method uses relative attitudes of conjugate faults to evaluate the amplitude and spatial heterogeneity of the deviatoric stress and frictional strength in the seismogenic zone. Relative fault orientations (dihedral angles) and sense of slip are determined using quasi‐planar clusters of seismicity and their composite focal mechanisms. The observed distribution of dihedral angles between active conjugate faults in the area of Ridgecrest (California, USA) that hosted a recent sequence of strong earthquakes suggests in situ coefficient of friction of 0.4–0.6, and depth‐averaged shear stress on the order of 25–40 MPa, intermediate between predictions of the “strong” and “weak” fault theories. 
    more » « less